This vignette provides a quick tour of the R package rtweet: Collecting Twitter Data.

Search tweets

Search for up to 18,000 (non-retweeted) tweets containing the rstats hashtag.

## search for 5000 tweets using the rstats hashtag
rt <- search_tweets(
  "#rstats", n = 18000, include_rts = FALSE
)

## preview tweets data
rt

## preview users data
users_data(rt)

## plot time series (if ggplot2 is installed)
ts_plot(rt)

Quickly visualize frequency of tweets over time using ts_plot().

## plot time series of tweets
ts_plot(rt, "3 hours") +
  ggplot2::theme_minimal() +
  ggplot2::theme(plot.title = ggplot2::element_text(face = "bold")) +
  ggplot2::labs(
    x = NULL, y = NULL,
    title = "Frequency of #rstats Twitter statuses from past 9 days",
    subtitle = "Twitter status (tweet) counts aggregated using three-hour intervals",
    caption = "\nSource: Data collected from Twitter's REST API via rtweet"
  )

Twitter rate limits cap the number of search results returned to 18,000 every 15 minutes. To request more than that, simply set retryonratelimit = TRUE and rtweet will wait for rate limit resets for you.

## search for 250,000 tweets containing the word data
rt <- search_tweets(
  "data", n = 250000, retryonratelimit = TRUE
)

Search by geo-location—for example, find 10,000 tweets in the English language sent from the United States.

## search for 10,000 tweets sent from the US
rt <- search_tweets(
  "lang:en", geocode = lookup_coords("usa"), n = 10000
)

## create lat/lng variables using all available tweet and profile geo-location data
rt <- lat_lng(rt)

## plot state boundaries
par(mar = c(0, 0, 0, 0))
maps::map("state", lwd = .25)

## plot lat and lng points onto state map
with(rt, points(lng, lat, pch = 20, cex = .75, col = rgb(0, .3, .7, .75)))

Stream tweets

Randomly sample (approximately 1%) from the live stream of all tweets.

## random sample for 30 seconds (default)
rt <- stream_tweets("")

Stream all geo enabled tweets from London for 60 seconds.

## stream tweets from london for 60 seconds
rt <- stream_tweets(lookup_coords("london, uk"), timeout = 60)

Stream all tweets mentioning realDonaldTrump or Trump for a week.

## stream london tweets for a week (60 secs x 60 mins * 24 hours *  7 days)
stream_tweets(
  "realdonaldtrump,trump",
  timeout = 60 * 60 * 24 * 7,
  file_name = "tweetsabouttrump.json",
  parse = FALSE
)

## read in the data as a tidy tbl data frame
djt <- parse_stream("tweetsabouttrump.json")

Get friends

Retrieve a list of all the accounts a user follows.

## get user IDs of accounts followed by CNN
cnn_fds <- get_friends("cnn")

## lookup data on those accounts
cnn_fds_data <- lookup_users(cnn_fds$user_id)

Get followers

Retrieve a list of the accounts following a user.

## get user IDs of accounts following CNN
cnn_flw <- get_followers("cnn", n = 75000)

## lookup data on those accounts
cnn_flw_data <- lookup_users(cnn_flw$user_id)

Or if you really want ALL of their followers:

## how many total follows does cnn have?
cnn <- lookup_users("cnn")

## get them all (this would take a little over 5 days)
cnn_flw <- get_followers(
  "cnn", n = cnn$followers_count, retryonratelimit = TRUE
)

Get timelines

Get the most recent 3,200 tweets from cnn, BBCWorld, and foxnews.

## get user IDs of accounts followed by CNN
tmls <- get_timelines(c("cnn", "BBCWorld", "foxnews"), n = 3200)

## plot the frequency of tweets for each user over time
tmls %>%
  dplyr::filter(created_at > "2017-10-29") %>%
  dplyr::group_by(screen_name) %>%
  ts_plot("days", trim = 1L) +
  ggplot2::geom_point() +
  ggplot2::theme_minimal() +
  ggplot2::theme(
    legend.title = ggplot2::element_blank(),
    legend.position = "bottom",
    plot.title = ggplot2::element_text(face = "bold")) +
  ggplot2::labs(
    x = NULL, y = NULL,
    title = "Frequency of Twitter statuses posted by news organization",
    subtitle = "Twitter status (tweet) counts aggregated by day from October/November 2017",
    caption = "\nSource: Data collected from Twitter's REST API via rtweet"
  )

Get favorites

Get the 3,000 most recently favorited statuses by JK Rowling.

jkr <- get_favorites("jk_rowling", n = 3000)

Search users

Search for 1,000 users with the rstats hashtag in their profile bios.

## search for users with #rstats in their profiles
usrs <- search_users("#rstats", n = 1000)

Lookup users

## lookup users by screen_name or user_id
users <- c("KimKardashian", "justinbieber", "taylorswift13",
           "espn", "JoelEmbiid", "cstonehoops", "KUHoops",
           "upshotnyt", "fivethirtyeight", "hadleywickham",
           "cnn", "foxnews", "msnbc", "maddow", "seanhannity",
           "potus", "epa", "hillaryclinton", "realdonaldtrump",
           "natesilver538", "ezraklein", "annecoulter")
famous_tweeters <- lookup_users(users)

## preview users data
famous_tweeters

# extract most recent tweets data from the famous tweeters
tweets_data(famous_tweeters)

Posting statuses

post_tweet("my first rtweet #rstats")

Following users

## ty for the follow ;)
post_follow("kearneymw")